
Modern Language Design
Fabio Pellacini, FIM, UniMoRe

Language Design Goals have not changed

Efficiency

Reliability

Productivity

Modern not Contemporary

Efficient not Fast

Highlighted not Complete

Evolution not History

Execution Model

Prioritize Performance

C/C++ Compilation Model

Run on Bear Metal

Compiled Languages

Prioritize Interactivity

Require a RunTime

Dying Breed?

Interpreted Languages

Performance-and-Interactivity

Require a RunTime

Different Jitting Strategies

Jitted Languages

Compile on Demand

Prioritize Efficiency

No new Interpreters

Interactivity via Jitting

Performance via AOT

Compilation Strategy

 Memory Model

Prioritize Performance

Safety Concerns

Predictable Performance

Run on Bare Metal

Manual Memory Management

Prioritize Safety

Performance Overhead

Unpredictable Performance

Require a RunTime

Garbage Collection

Prioritize Safety

Performance Overhead

Predictable Performance

Run on Bare Metal

Reference Counting

GC is generally faster

RC is predictable w/no RT

Reduce RC overhead

Rc-vs-Gc Debate

Rc-vs-Gc Debate

Most Objects on the Heap

Optimization for Scalars

Increases GC/RC pressure

Mostly Heap

Objects may be Inlined

Per-type or per-instance

Reduced GC/RC pressure

Inline and Heap

Memory Safety Issues in Cp

Memory Safety Issues in Cp

Memory Safety Issues in Cp

Expose pointers

Makes no ownership assumption

Ranges model pointers

Pointer access is unsafe

Memory Safety Issues in Cp

Similar references as C++

Favors single ownership

Verified at compiled time

Rust Memory Management

Rust Memory Management

Rust Memory Management

1. One mutable reference or any

 number of immutable references

2. References must be valid

3. Data must outlive references

Rust Memory Management

Adds Complexity

Reduced by Type Inference

Trade-off with Safety Guarantees

Unsafe escape hatch

Rust Memory Management

Same Memory Model

Rust: Favors Safety

C++: Favors Simplicity

Industry is switching to Rust

Cpp-vs-Rust Memory Management

Safe Memory Model

Prioritize Safe Memory

Simple-but-Inefficient

Complex-but-Efficient

Compiler to Reduce Overhead

Object Model

Default for assignment and calls

Values: behave like int

References: behave like int&

“Moves”: behave like int&&

Values, References, Move

Objects are Values

Combined with Immutability

Referential Transparency

Values-only

Objects are References

May Optimize Scalars

Combined with Mutability

Convenient, but error prone

References-only

Semantic by Types

Prioritize Simplicity

Prefer Values

Eg: Collections are COW Types

Values and Reference

Semantic by Types

Prioritize Simplicity

Prefer Values

Eg: Collections are COW Types

Values and Reference

Explicit References

Prioritize Control

Refs for Efficient and Sharing

Prefer Values

Values-default

System languages

References for efficiency

References for mutable sharing

Values-default

Defaults to Destructive Moves

Explicit Copies

Explicit Safe References

Mutability discouraged

Move-default

System languages

Explicit Copies

Control via Safe References

Mutability discouraged

Move-default

Varies wildly in Languages

Backward compatibility

Referential Transparency

Verbose Efficiency

Values-vs-Reference

Type System

Favors experimentation

Easy to start, hard to maintain

Dynamic Typing

Favors robustness and safety

Hard to start, easier to maintain

Static Typing

Optional Typing

Start easy, add types later

Gradual Typing

Trade-off for migration

Gradual Typing - Unsoundness

Trade-off for migration

Gradual Typing - Imprecision

Trade-off for migration

Gradual Typing - Imprecision

Trade-off for migration

Gradual Typing - Compilation

Type equality by name

Nominal Type

Type equality based on structure

Structural Type

Type equality based on structure

Structural Type

Type equality based on structure

Structural Type

Type errors on use

“Duck” Type

Type errors on use

“Duck” Type

Prioritize Type Safety

Nominal Types Preferred

Gradual Structural Types

Static and Nominal

Type Inference

Assign Types Automatically

Reduce Typing Overhead

Needed for Generics

Type Inference

Type Inferred from Expressions

Local Type Inference

Type Inferred from Expressions

Local Type Inference

Many Limitations

Local Type Inference

Lifts Some Limitations

HM-Style Type Inference

Fully Decidable: No Annotations

 Complex Error Messages

Function Annotations

 Limited, but Good Tradeoff

HM-Style Type Inference

Prioritize Inference

Guarding for Complexity

Type Inference

Algebraic Data Type

Represent Alternatives

Runtime Errors on Use

Dynamic Sum Type

Error Prone

Not First Class

Tagged Enums

Manual Dispatch on Tag

Tagged Enums

No comment

Tagged Enums

Variant with Payload

Sum Type

Used Extensively

Sum Type

Dispatch via Pattern Matching

Pattern Matching

Dispatch via Pattern Matching

Pattern Matching

General Programming Tool

Pattern Matching

General Programming Tool

Pattern Matching

Lifetime

Safe References via Lifetimes

Part of the Type System

Mostly Automatic

Lifetime Annotations

References to Valid Objects

Lifetime Annotations

Mostly Inferred, Some Explicit

Lifetime Annotations

Inference Simplifies Lifetimes

Generics Simplifies Lifetimes

Lifetime Annotations

Generics

Free-for-all Polymorphism

Dynamic Polymorphism

Object-Oriented Programming

Many Drawbacks

Julia’s Multiple Dispatch

SubType Polymorphism

Ad-hoc or Parametric

Modern Generic Libraries

Compile-Time Polymorphism

Errors during Instantiation

Unconstrained Generics

Concepts Check Instantiation

No Check on Implementation

Constrained Generics

Check Instantiation and Impl.

Used Throughout the Language

Traits

Traits

Traits define Interfaces

Constrain Generics

Ad-hoc Implementations

Operator Overloading

Traits

Monomorphization

Dynamic Dispatch

Multiple Dispatch

Generic Compilation

Compile-Time

Checked aka Traits

Monomorphized

Base of Language and StdLib

Generics

Concurrency

Concurrency is not Parallelism

Concurrency-vs-Parallelism

Language Support

Concurrency

Language Support

Concurrency

Language Support

Concurrency

Library Support

Parallelism

Data-Race Safety

Data-Race Safety

Concurrency in Language

Parallelism in Libraries

Some Safety Guarantees

Still not Ubiquitous

Concurrency and Parallelism

Metaprogramming

C’s Macros

C++’s/Zig’s Constexpr

Code Generation

Rust Hygienic Macros

Swift Compiler Plugins

Code Generation

Contemporary Desiderata

Simpler References and Types

Target Parallel CPU and GPU

Heterogenous Systems

Distributed Systems

Desiderata for Contemporary Languages

Modern Languages Rule!
Fabio Pellacini, FIM, UniMoRe

