Fabio Pellacini, FIM, UniMoRe

Language Design Goals have not changed

Etficiency
Reliability

Productivity

Language

1 Js JavaScript

2 Python

3 TypeScript
4 j% Java

5 C#

6 C++

7 PHP

8 C

9 Shell
10 GO Go

Avg
1.75

1.75

4.5

6.75
7.75
9.75
9.75

10.5

StDev

0.95

0.95

1.82

1.73

1.41

1.7

2.98

0.95

3.3

2.08

11

12

13

14

15

16

17

18

19

20

B wmeRN®o NG

Language

Rust

Kotlin

Swift

R

Dart

PowerShell

Ruby

Lua

Scala

Objective-C

Avg
13

13.66

15.66

16.66
17
17

17
21

23

25

StDev
2.64

1.52

5.13

5.13

8.18

7.07

9.84

10.58

Modern not Contemporary
Efficient not Fast
Highlighted not Complete

Evolution not History

Prioritize Performance

C/C++ Compilation Model

Run on Bear Metal

//a‘%a‘e/ /. W%fﬂj

Prioritize Interactivity

Require a RunTime

Dying Breed?

e @’Z‘w/ L%%as ~

Performance-and-Interactivity JS %

Require a RunTime
| o | ~ julia
Different Jitting Strategies

—>

Cm%éém DW

julia> f(x) =1 + x
f (generic function with 1 method)

julia> typeof(f).name.mt.defs.func.specializations
svec()

julia> f(1)
2

julia> typeof(f).name.mt.defs.func.specializations
MethodInstance for f(::Int64)

julia> f(3.2)
4,2

julia> typeof(f).name.mt.defs.func.specializations
svec(MethodInstance for f(::Int64), MethodInstance for f(::Float64),

¢
—
g
5

CWM% S, LL/%

Prioritize Efficiency
No new Interpreters
[Interactivity via Jitting

Pertormance via AOT

Manwal Mener W B

Prioritize Performance

Satety Concerns

Predictable Performance N

Run on Bare Metal -

gﬁ%ﬁ Collection -

Prioritize Safety

Pertormance Overhead

Unpredictable Performance

Require a RunTime vy

OCaml

éa/zéﬁm Crunting -

Prioritize Safety
Pertormance Overhead

Predictable Performance

Run on Bare Metal

7@—%— go D@éﬁﬂ/ -

GC is generally faster

RC is predictable w/no RT
Reduce RC overhead

C—- 15— go Deéé@

Perceus: Garbage Free Reference Counting with Reuse

Alex Reinking”
Microsoft Research
Redmond, WA, USA

alex_reinking@berkeley.edu

Leonardo de Moura
Microsoft Research
Redmond, WA, USA

leonardo@microsoft.com

Abstract

We introduce Perceus, an algorithm for precise reference
counting with reuse and specialization. Starting from a func-
tional core language with explicit control-flow, Perceus emits
precise reference counting instructions such that (cycle-free)
programs are garbage free, where only live references are re-
tained. This enables further optimizations, like reuse analysis
that allows for guaranteed in-place updates at runtime. This
in turn enables a novel programming paradigm that we call
functional but in-place (FBIP). Much like tail-call optimiza-
tion enables writing loops with regular function calls, reuse
analysis enables writing in-place mutating algorithms in a
purely functional way. We give a novel formalization of ref-
erence counting in a linear resource calculus, and prove that
Perceus is sound and garbage free. We show evidence that
Perceus, as implemented in Koka, has good performance and
is competitive with other state-of-the-art memory collectors.

CCS Concepts: « Software and its engineering — Run-
time environments; Garbage collection; « Theory of
computation — Linear logic.

Keywords: Reference Counting, Algebraic Effects, Handlers

ACM Reference Format:

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: Garbage Free Reference Counting with Reuse. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI °21), June
20-25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3453483.3454032

Ningning Xie"
University of Hong Kong
Hong Kong, China
nnxie@cs.hku.hk

Daan Leijen
Microsoft Research
Redmond, WA, USA

daan@microsoft.com

1 Introduction

Reference counting [7], with its low memory overhead and
ease of implementation, used to be a popular technique for
automatic memory management. However, the field has

broadly moved in favor of generational tracing collectors [31],

partly due to various limitations of reference counting, in-

cluding cycle collection, multi-threaded operations, and ex-
pensive in-place updates.

In this work we take a fresh look at reference counting. We
consider a programming language design that gives strong
compile-time guarantees in order to enable efficient refer-
ence counting at run-time. In particular, we build on the
pioneering reference counting work in the Lean theorem
prover [46], but we view it through the lens of language
design, rather than purely as an implementation technique.

We demonstrate our approach in the Koka language [23,
25]: a functional language with mostly immutable data types
together with a strong type and effect system. In contrast
to the dependently typed Lean language, Koka is general-
purpose, with support for exceptions, side effects, and muta-
ble references via general algebraic effects and handlers [39,
40]. Using recent work on evidence translation [50-52], all
these control effects are compiled into an internal core lan-
guage with explicit control flow. Starting from this functional
core, we can statically transform the code to enable efficient
reference counting at runtime. In particular:

e Due to explicit control flow, the compiler can emit precise
reference counting instructions where a (non-cyclic) ref-
erence is dropped as soon as possible. We call this garbage
free reference counting as only live data is retained (§ 2.2).

FP%: Fully in-Place Functional Programming

ANTON LORENZEN, University of Edinburgh, UK
DAAN LEIJEN, Microsoft Research, USA
WOUTER SWIERSTRA, Universiteit Utrecht, Netherlands

As functional programmers we always face a dilemma: should we write purely functional code, or sacrifice
purity for efficiency and resort to in-place updates? This paper identifies precisely when we can have the
best of both worlds: a wide class of purely functional programs can be executed safely using in-place updates
without requiring allocation, provided their arguments are not shared elsewhere.

We describe a linear fully in-place (FIP) calculus where we prove that we can always execute such functions
in a way that requires no (de)allocation and uses constant stack space. Of course, such a calculus is only
relevant if we can express interesting algorithms; we provide numerous examples of in-place functions on
datastructures such as splay trees or finger trees, together with in-place versions of merge sort and quick sort.

We also show how we can generically derive a map function over any polynomial data type that is fully
in-place. Finally, we have implemented the rules of the FIP calculus in the Koka language. Using the Perceus
reference counting garbage collection, this implementation dynamically executes FIP functions in-place
whenever possible.

CCS Concepts: « Software and its engineering — Control structures; Recursion; » Theory of computation
— Operational semantics.

Additional Key Words and Phrases: FBIP, Tail Recursion Modulo Cons

ACM Reference Format:
Anton Lorenzen, Daan Leijen, and Wouter Swierstra. 2023. FP?: Fully in-Place Functional Programming. Proc.
ACM Program. Lang. 7, ICFP, Article 198 (August 2023), 30 pages. https://doi.org/10.1145/3607840

1 INTRODUCTION AND OVERVIEW

The functional program for reversing a list in linear time using an accumulating parameter has
been known for decades, dating back at least as far as Hughes’s work on difference lists [1986]:

fun reverse-acc(xs : list<a>, acc : list<a>) : list<a>

match xs
Cons(x,xx) -> reverse-acc(xx, Cons(x,acc))
Nil -> acc

fun reverse(xs : list<a>) : list<a>
reverse-acc(xs,Nil)

As this definition is pure, we can calculate with it using equational reasoning in the style of Bird
and Meertens [Backhouse 1988; Gibbons 1994]. Using simple induction, we can, for instance, prove
that this linear time list reversal produces the same results as its naive quadratic counterpart.

Not all in the garden is rosy: what about the function’s memory usage? The purely functional
definition of reverse allocates fresh cons nodes in each iteration; an automatic garbage collector needs
to discard unused memory. This generally induces a performance penalty relative to an imperative

/Wm%j/ }{% -

Most Objects on the Heap
Optimization for Scalars

Increases GC/RC pressure

Objects may be Inlined
Per-type or per-instance

Reduced GC/RC pressure

/Mmdjufm//mwa%

void function() {
// manual memory management - safety issues
auto optr = new int{d2}; use(optr); delete optr;
// automatic memory management - single ownership
auto uptr = std::make_unique<int>(42); use(uptr);
// automatic memory management - shared ownership
auto sptr = std::make_shared<int>(42); use(sptr);

// manual memory management - safety issues

auto aptr = new int[100]; use(aptr); deletel] aptr;
// automatic memory management - value type

auto vval = std::vector<int>(100); use(vval);

MW&%//M&L%C%

void function() {
// manual memory management - safety issues
auto optr = new int{d2}; use(optr); delete optr;
// automatic memory management - single ownership
auto uptr = std::make_unique<int>(42); use(uptr);
// automatic memory management - shared ownership
auto sptr = std::make_shared<int>(42); use(sptr);

// manual memory management - safety issues

auto aptr = new int[100]; use(aptr); delete[] aptr;
// automatic memory management - value type

auto vval = std::vector<int>(100); use(vval);

/Mmdjufm//wa%

auto issuel() { // escaped local reference
auto value = 42; return &value; }
auto issue2() { // escaped in lambda
auto value = 42; return [&]{ return value; }; }
auto issue3() { // invalid view —
auto vec = std::vector<int>{l};
return std::spanivec}; }
auto issueld() { // reference invalidated
auto vec = std::vector<int>{l};
auto& ref = vecl[0]; vec.resize(10); }

MW%/WQ@C/% -

Expose pointers

Makes no ownership assumption .
Ranges model pointers -

Pointer access 1s unsafe —

Rust Memer: /HW -

Similar references as C++

Favors single ownership

Verified at compiled time

Rust Memer: /WW -

fn functionl() {
let value = 42; let reference = &value;
let bad_ref = { let value = 42; &value }; —>

error[E0597]: ‘value' does not live long enough
-—> src/main.rs:8:37

8 let bad_ref = { let value = 42; &value };

———————————— aannan — ‘yalue' dropped here while still borrowed —>
I I |

| | borrowed value does not live long enough

| binding ‘value' declared here

borrow later stored here

Rust Memer: /WMW -

fn function2() {
let mut values = vec![1l, 2, 3];
let reference = &mut values[0]; N
values.push(d4); *reference = 0;

h

%
error[EOU499]: cannot borrow ‘values' as mutable more than once at a time
-=> src/main.rs:14:5

|
13 | let reference = &mut values[0]; —

|l mm——— first mutable borrow occurs here
14 | values.push(d); *reference = 0;

| ARAAAA eeececece——————— first borrow later used here

- -

second mutable borrow occurs here

1. One mutable reference or any

number of immutable references N
2. References must be valid S

3. Data must outlive reterences N

Rust Memer: /HW ”

Adds Complexity B
Reduced by Type Inference .
Trade-otf with Safety Guarantees -

Unsate escape hatch -

C/% s-IRust Vemer: /WW

@

Same Memory Model
Rust: Favors Satfety .
C++: Favors Simplicity -

Industry is switching to Rust -

S, MW /1/[0‘%

Prioritize Sate Memory
Simple-but-Inetficient
Complex-but-Etficient

Compiler to Reduce Overhead

V@%&L/ é@zém/ Moves

Detault for assignment and calls
Values: behave like int

References: behave like int&

“Moves”: behave like int&&

V@%@% -

Objects are Values
Combined with Immutability

Reterential Transparency

b/ e o), WG

OCaml

o %

Objects are References
] I TS

May Optimize Scalars

@ — julis

Convenient, but error prone -

Combined with Mutability

V%%&L Wz/éﬂ/zém -

Semantic by Types

Prioritize Simplicity

Prefer Values -

Eg: Collections are COW Types -

V%%@ Mé@%m -

struct Point { // struct is a value type
var x: Float
var v: Float

h

class Shape { // class is a reference type
var pos: Point

var col: String —
h
let p = Point(x: 1.0, y: 2.0) // value g
let s = Shape(pos: p, col: "red") // reference

m W //;i\
| L[N

Explicit Reterences

Prioritize Control .
Rets tor Efficient and Sharing -

Prefer Values -

Vilves é%

void values() ¢

auto
auto
auto
auto
auto

auto

SV
SC
ST
VV
VC
vI>

1;

SV ;

&sv;
vector{l, 2}:
VV;

&V ;

//
//
//

//
//

//

value
Copy
reference
value

copy
reference

/Mﬂ%—é M -

Defaults to Destructive Moves

Explicit Copies .
Explicit Sate Reterences -~

Mutability discouraged -

/Mﬂ%—zé Wo% -

fn moves() {
let _sv: 132 = 42; // value

let _sr: &i32 = &_sv; // reference

let _sc: 132 = _sv; // copy .
let _vv: Vec<i32> = vec![1, 2]; // value

let _vr: &Vec<i32> = &_vv; // reference -
let _vc: Vec<i32> = _vv; // move

let _v2: Vec<i32> = _vv; // error

AANAANAN —>

Vilues wéﬂ/zém

Varies wildly in Languages
Backward compatibility
Reterential Transparency

Verbose Efficiency

”/f/e Syslen

D Gy |

function f(x, y) { return x + vy; }

def f(x, y): return x + vy

Favors experimentation

Easy to start, hard to maintain

Static %

int f(int x, int y) { return x + vy; }

fn £(x: i32, y: i32) = i32 { x + y }

Favors robustness and safety EJ

Hard to start, easier to maintain
vadl -

OCaml

Q/W % ”

def g(x: int, y: int) — int: return x + vy

function g(x: number, y: number): number
{ return x + y; }

Optional Typing

Start easy, add types later -

ng% - Ulisoundvess -

function u() {
const v : number[] = [1, 2, 3];

const e : number = v[3];
// e is undefined at runtime

h

Trade-otf for migration -

Qm@% - /%wm -
function g1(x, y: number): number
{ return x + y; }

gl(1l, 2);

function g2(x: any, y: number): number
{ return x + vy; }
g2(true, 2);

Trade-otf for migration -

ng % - /%Wm -

def h(a: ArrayLike, b: ArraylLike) — Arraylike:
return a + b

h([1, 2], [3, 4]1)
hCarray([1, 2]), array([3, 4]))
hC[1, 21, 3)

Trade-otf for migration -

ng % - CWW

julia> f(x) =1 + X
f (generic function with 1 method)

julia> typeof(f).name.mt.defs.func.specializations
svec()

julia> f(1)
2

julia> typeof(f).name.mt.defs.func.specializations
MethodInstance for f(::Int64)

¢
—
g
5

Noninal Z’%@

struct Vector2 { float x, vy; };
struct Vector2a { float x, vy; };

float dot(Vector2 a, Vector2 b) 1
return a.x * b.x + a.y * b.y; }
float length(Vector2a v) {
return dot(v, v); }

Type equality by name

S L‘/”zwfza/%/ % ”

// product types
interface Vec2 { x: number; y: number; }
function add(p: Vec2, q: Vec2): Vec2 1

return { x: p.x + q.x, Vv: p.v + q.V };
5
add({x: 1, y: 2}, ix: 3, y: U});

Type equality based on structure -

S L‘/”zwfza/%/ % ”

// sum types without shared fields
function logme(x: number | string): void {
console.log(x);

h

Logme(42); -
}ggms("hello"); N

Type equality based on structure -

S L‘/”zwfza/%/ % ~

// sum types with shared fields
interface Circle { kind: "circle"; radius: number; }
interface Square { kind: "square"; side: number; }
function area(s: Circle | Square): number {
switch (s.kind) 1
case "circle": return Math.PI * s.radius ** 2;

case "square": return s.side ** 2

¥

Type equality based on structure -

Duck” Lypes -

def dot(vl, v2) — float:
return v1[0] * v2[0] + v1[1] * v2[1]

dot([1, 2], [3, d]) N
dot((1, 2), (3, d))

Type errors on use -

Duck” Lypes

Vec2Like = tuple[float, float] | list[float]

def dot(vl: Vec2Like, v2: Vec2Like) — float:
return v1[0] * v2[0] + v1[1] * v2[1]

A

Type errors on use

Static and Nomiral'

Prioritize Type Satety
Nominal Types Preterred

Gradual Structural Types

%//@ Cr/LCe -

Assign Types Automatically
Reduce Typing Overhead

Needed for Generics

lm/% Jiference N

function inference() {
const sv: number = 3;

const . number = sv + 2;

const av : number[] = [1, 2, 3]; —

const . number[] = av.map(x = x + 1); .
y — julia

Type Inferred from Expressions -

Lm/% Jiference -

template <typename T>
auto gf(T a) { return a; }
auto inference() {

auto sv = 42; // infer from expression

auto vv = vectoril, 2}; // infer from params —>
auto gv = gf(d2); // infer from call

return sv; // infer return type

h

Type Inferred from Expressions -

ZM/Z%& Jiference -

auto no_inference() {
auto vv = vector{}; // cannot infer
vv.push_back(d2): // ignored by error

h

function no_inference() { —
const . (x: any) = any = x = x+1; // too generic
const . (x: number) = number = (x: number) = x+1; —>ju|i.'a

3

Many Limitations -

f{/mucﬂé g/e Jiterence -

fn inference() {

let mut v: Vec<i32> = vec![]; .
v.push(1l);
let f: impl Fn(i32) — i32 = |x: i32]| x + 1;

£(1);

Lifts Some Limitations

}{/Mé’ﬁé g/e Jiterence -

Fully Decidable: No Annotations

Complex Error Messages

Function Annotations -

Limited, but Good Tradeofit

%//@ cnce

Prioritize Infterence

Guarding for Complexity

D/W fm% ”

Vec2Like = tuple[float, float] | list[float]

def dot(vl: Vec2Like, v2: Vec2Like) — float:
return v1[0] * v2[0] + v1[1] * v2[1]

Represent Alternatives

Runtime Errors on Use -

%% Ciums

enum Tag { Tagl, Tag2 };
struct TaggedUnion {

Tag tag; -
union { Datal d1; Data2 d2; }; N
3
Error Prone —

Not First Class -

??7% Ciums

void dispatch(TaggedUnion u) {
switch (u.tag) { —
case Tagl: usel(u.dl); break;
case Tag2: use2(u.d2); break;

h

h
Manual Dispatch on Tag -

e |

using Variant = variant<Datal, Data2>,

void call_use(Datal d) { usel(d); } —

void call_use(Data2 d) { use2(d); }

void dispatch(Variant v) { —>
std::visit([]Cauto&& d) { call_use(d); }, v);

$ s

No comment =

fm% -
enum Variant 1

Tl1(Datal),
T2(Data2),

Variant with Payload

OCaml

Sum '(-
unt %@
fn not_total(v: i32) — Option<i32> { _>®
if v > 0 { Some(v) } else { None }

} —

fn may_error(v: i32) — Result<i32, String> {

if v >0 { Ok(v) } else { Err("error".to_string()) } _)&
}

fn propagate_error(v: i32) — Result<i32, String> {
Ok(may_error(v)? + 1)
¥

Used Extensively vadll -)‘

OCaml

[l ern M@f@ -~

fn pattern_match(v: Variant) {

match v {
Variant::Tl(data: Datal) = usel(data),

Variant::T2(data: Data2) = use2(data), !E::,
.

h

Dispatch via Pattern Matching
ol)

[l ern M@f@ -~

fn pattern_match(v: Variant) {

match v {
Variant::Tl(data: Datal) = usel(data),

Variant::T2(data: Data2) = use2(data), !E::,
.

h

Dispatch via Pattern Matching
ol)

[l ern M@f@ -

struct Point { x: 132, y: 132 }
fn match_point(p: Point) — 132 {
match p 1
Point{ x: 132, y: 0 } = X, ﬁ
Point{ x: 0, y: i32 } = vy, *&

Point{ x: 132, y: i32 } = x + vy,

}
General Programming Tool m*)

[l ern M@f@ ~

fn fibonacci(n: i32) — i32 {
match n {
0] 1=1, —
n: i32 if n > @ = fibonacci(n - 1) + fibonacci(n - 2),

_ = panic!("negative"), &
} —>

General Programming Tool ::g?*)

%m/ Annotations -

Safe References via Lifetimes
Part of the Type System

Mostly Automatic

%m Annotations -

fn lifetimes() {

let _sv: i32 = 42; // 'a
let _sr 32 = &_sv; // 'a —>
let _sc 32 = {
// 'b
let value: 132 = 42; // 'b g
&value // 'b
// drop value — 'b invalid .

¥

¥
References to Valid Objects -

%m/ Annotations -

struct Ref<'a, T: 'a> {
x: &'a T, —

h

fn identity< T>(x: &' xT) = &' xT { x }

Mostly Inferred, Some Explicit -

%m/ Annotations -

Inference Simplifies Lifetimes .

Generics Simplifies Lifetimes -

D/mméo p%W/ﬂ/ -~

def dynamic(x: int | str | list[int]) — int:
if isinstance(x, str):

return 0

elif isinstance(x, list):
return sum(x)

else:

return x + 1

Free-tor-all Polymorphism -

Sel e Pelmerphin *

struct Base { int f() { return 42; } }:
struct Derived : Base { int f() { return 43; } }:
auto call_f(Basex b) { return b—>f(); } —

Object-Oriented Programming

Many Drawbacks

Julia’s Multiple Dispatch -

CA%LZ p%W/ﬂ/ @ g

void parametric(T a) { use(a); }

void ad_hoc(Datal a) { usel(a); } \
void ad_hoc(Data2 a) { use2(a); } —a‘EEL,

Ad-hoc or Parametric

Modern Generic Libraries —

WM ' -~
C/HLEITCH

template<typename T>

auto gsum(T a, T b) { return a + b; }

N
void sum() 1
auto sl = gsum(l, 2); // ok
auto s2 = gsum(l, 3.0); // type mismatch —
auto s3 = gsum(vectorily, // no operator+
vectori{2}); // instantiation error N

¥

Errors during Instantiation -

CMM QW -
template<typename T> concept Equatable =

requires (T a, Tb) { a ==b; };:
template<Equatable T>

auto eq(T a, T b) {1 return a == b; } -
template<Equatable T>

auto prod(T a, T b) {1 return a * b; } —
Concepts Check Instantiation -

No Check on Implementation -

7;@& ”

fn eq<T: PartialEg>(x: T, y: T) — bool 1
X ==y

h

fn eq_err<T>(x: T, y: T) — bool 1%

X2y

h
Check Instantiation and Impl. -~

Used Throughout the Language -

Lruils

trait IsNil {
fn is_nil<'self>(&'self self) — bool;

impl IsNil for i32 {
fn is_nil<'self>(&'self self) — bool {

x*self ==
}
3
s
impl IsNil for Vec<i32> {
fn is_nil<'self>(&'self self) — bool { N

self.is_empty()

7;% ”

Traits define Interfaces

Constrain Generics

Ad-hoc Implementations -

Operator Overloading -

Generie CWW -

Monomorphization

Dynamic Dispatch

Multiple Dispatch

gm
Compile-Time
Checked aka Traits

Monomorphized

Base of Language and StdLib

CMW/?@W (S 1ot p@/%%%

@ Concurrency is not Parallelism by Rob Pike

, .

©¢

<

’/

p

P — | E— 7
y

p o) 026/31:23 B & YouTube () T3

CW/% —p5— p@/%%/ﬂ/

O O-0-0 O
O O-0

O-0~0~0~0-0-0~0
O+0-+0~0~0->0-0~0

memy

func main() 1
channel := make(chan int)
go concurrent(channel)
value := ¢—channel
println(value)

func concurrent(channel chan int) {
channel & 42

¥
Language Support

memy

func main() 1
channel := make(chan int)
go concurrent(channel)
value := ¢—channel
println(value)

func concurrent(channel chan int) {
channel & 42

¥
Language Support

CW/W

t{ tokio :: main]
» Run | Debug
async fn main() {

let value: i32 = concurrent().await;
println!("{}", value);
¥

async fn concurrent() — i32 {
L2

¥

Language Support

p@/%%% -
pub fn parallel() { @ _>®
let v = Vec::from([1l; 1000]);

let _ssum = v.iter().map(]|x]| x * 2).sum::<i32>();
let _psum = v.par_iter().map(|x| x * 2).sum::<i32>(); —

h

int parallel() { %&

auto v = std::vector<int>(1000, 1);
tbb::parallel_for(0, 1000, [&](int i) { v[i] *= 2; });
3

(VAN

— julia

Library Support -

Data-Race Sa; ety ”

pub fn data_race() {

let mut v = Vec::from([1; 1000]); >
v.par_iter()
.map(]x| { —
v[ie] = o,
X % 2
}) -

.sum: :<i32>();

LDuta~Race Sa /

A Flexible Type System for Fearless Concurrency

Mae Milano
University of California, Berkeley
Berkeley, CA, USA
mpmilano@berkeley.edu

Abstract

This paper proposes a new type system for concurrent pro-
grams, allowing threads to exchange complex object graphs
without risking destructive data races. While this goal is
shared by a rich history of past work, existing solutions ei-
ther rely on strictly enforced heap invariants that prohibit
natural programming patterns or demand pervasive annota-
tions even for simple programming tasks. As a result, past
systems cannot express intuitively simple code without un-
natural rewrites or substantial annotation burdens. Our work
avoids these pitfalls through a novel type system that pro-
vides sound reasoning about separation in the heap while
remaining flexible enough to support a wide range of desir-
able heap manipulations. This new sweet spot is attained
by enforcing a heap domination invariant similarly to prior
work, but tempering it by allowing complex exceptions that

Joshua Turcotti
University of California, Berkeley
Berkeley, CA, USA
jturcotti@berkeley.edu

Andrew C. Myers
Cornell University
Ithaca, NY, USA
andru@cs.cornell.edu

1 Introduction

The promise of a language with lightweight, safe concur-
rency has long been attractive. Such a language would stat-
ically ensure freedom from destructive races, avoiding the
cost of synchronization except when concurrent threads ex-
plicitly communicate. Our goal is to obtain this “fearless
concurrency’ [35] for a language with pervasive mutability
at its core. Broadly speaking, past efforts to design such a
language fall into three camps. Some, like Rust [36], simplify
reasoning by severely limiting the shape of representable
data structures—making the implementation of common data
structures, like the doubly linked list, unapproachable by non-
experts’. In others [17, 26, 28, 29, 33, 46], harsh limitations
on aliasing cause data structure traversal and manipulation
to involve significant mutation of the object graph even for
simple computations—for example, in these systems remov-

CW/@W M/ Purallolom

Concurrency in Language
Parallelism in Libraries
Some Safety Guarantees

Still not Ubiquitous

C% g@/ﬁ@/%&ﬁ% (9-
#tdefine SUM(a, b) (a + b) e_>

int use_macro() { return SUM(1, 2) * 3; }

N

constexpr int csum(int a, int b) { return a + b; }

int use_constexpr() { return csum(l, 2) * 3; } R
)

C’s Macros E

C++’s/Zig’s Constexpr -

C% g@/ﬁe/ﬂ‘m ~

t#{ derive(Parser)]

struct CliArgs {
name: String, —>
#{ arg(short, long)]
help: Option<bool>,

}
Rust Hygienic Macros -

Switit Compiler Plugins -

Simpler Reterences and Types
Target Parallel CPU and GPU

Heterogenous Systems

Distributed Systems

Modern /. W&g& Kzoé/

Fabio Pellacini, FIM, UniMoRe

e @ P — julia
5-E0))\-ﬁ)

@ @ A jui

